¹H NMR SPECTRAL EVIDENCE FOR THE STRUCTURE AND CONFORMATION OF PEPTIDE ANTIBIOTIC SIOMYCIN-A

Sir:

The chemical structures of the peptide antibiotic siomycin-A (I) isolated from *Streptomyces sioyaensis*¹⁾ as well as thiostrepton (II) produced by *S. azureus*²⁾ had earlier been studied by chemical degradations^{3,4)}. In 1970, much of the structure of II was determined by an X-ray crystallographic analysis⁵⁾. In 1976, we proposed the total structure of II on the basis of the X-ray analysis⁵⁾ and 15-MHz ¹³C NMR spectroscopy⁶⁾, and also the total structure of I on the basis of the close relationships, between I and II, of the degradation products^{3,4,7)} and ¹³C NMR spectra⁶⁾. We further confirmed the structure relationship between I and II by the analysis of the 36.5-MHz ¹⁵N NMR spectra⁸⁾.

However, the correlations between the structures and ¹H NMR spectra of I and II have not yet been elucidated in detail, which should provide some useful information about their stereostructures and conformations in solution. Recently the structures of similar antibiotics thiopeptins⁹⁾ were proposed from studies by 300-MHz ¹H and 75-MHz ¹³C NMR spectroscopy¹⁰⁾. We report here the detailed analyses of 270-MHz ¹H NMR spectra of I, II, and thiopeptin-B_a (III), which was isolated from commercially available thiopeptin mixtures⁹⁾, and propose the molecular conformation of these antibiotics in solution. The ¹H signals were assigned by detailed spindecoupling experiments and by comparisons of chemical shifts in various solvents. The OH and NH signals were revealed by the addition of a small amount of D_2O to CDCl₃ solutions. Additions of CD₃OD or CD₃COOD to CDCl₃ solutions did not completely exchange some of CONH protons by deuterons (see Fig. 1). All CONH protons were exchanged in pure CD₃-COOD. However, I rapidly decomposed by the addition of CF₃COOD. The signal assignments with chemical shift data are listed in Table 1 and the coupling constants, J values, in Table 2.

Intramolecular interproton OVERHAUSER efects111) were measured in a degassed CDCl3 solution of I (at 23°C and 60°C), by observing the difference spectra between the selective onresonance gated-1H-irradiated (with NOE) and off-resonance gated-1H-irradiated (without NOE) modes¹²⁾. In preliminary experiments, about 25% positive NOE enhancement was observed at 100-MHz, between the two geminal =CH2 signals of a dehydroalanine (Deala) residue of I in CDCl₃ at 30°C, although precise NOE measurements were not possible because of signal overlappings. However, the correlation time was roughly estimated as $6 \sim 8 \times 10^{-10}$ sec by 25-MHz ¹³C NMR spectroscopy¹³⁾. Accordingly, at 270-MHz, the NOE enhancements of proton resonances of I in CDCl₃ were much smaller (several % at most) and negative at 23°C, as expected for large globular molecules14,15). Therefore, we also measured the NOE

			I		1	П	I	II
Assi	gnments	CDCl ₃	CDCl ₃ CD ₃ OD	CD_3CO_2D	CDCl ₃	CD_3CO_2D	CDCl ₃	CD ₃ CO ₂ D
Ala-1	$\beta CH_3 \alpha CH CONH$	1.48d 4.80dq 6.54bd	1.47d 4.81dq 7.35bd ^b	1.42d 4.87q	1.46d 4.77dq 6.47bd	1.44d 4.81q	1.54d 4.96dq 6.85bd	1.63d 4.98q
Deala-1	β =CH(c) β =CH(t) CONH	5.18bs 5.76d 8.60bs	5.42bs 5.80d 8.64bs ^b	5.62bs 5.85bs	5.21bs 5.78d 7.80bs	5.61bs 5.94bs	5.26bs 5.82d 7.87bs	5.64bs 5.94bs
Deala-2	β =CH(c) β =CH(t) CONH	5.18bs 6.38bs 9.23bs	5.17bs 6.39bs 9.37bs ^b	5.30bs 6.48bs				-
Ala-2	βCH₃ αCH CONH				1.20d 3.83dq 7.58bd	1.19d 4.35q	1.22d 3.87dq 7.65bd	1.20d 4.35d
Val	γCH_3 βCH αCH	0.91d 1.04d 2.12m 2.94d	0.81d 1.10d 2.37m 3.01d	0.83d 1.09d 2.35m 3.22d			0.95d 0.99d 1.94m 2.90d	0.78d 1.11d 2.39m 3.31d
Ile	γCH_3 γCH_3 γCH_2 βCH αCH				0.95t 0.90d ~1.3m ~1.7m 2.99d	0.89t 1.08d ~1.6m ~2.1m 3.34d		
Q	3=CH 5=CH 6=CH 7-CH 8-CH 11-CH 11-CH 8-OH	7.31s 6.94d 6.35dd 3.61d 4.61d 5.34bq 1.37d 6.91d	7.31s 6.94d 6.44dd 3.60d 4.42s 5.34q 1.40d	7.41s 6.98d 6.51dd 3.69d 4.69s 5.47q 1.42d	7.31s 6.89d 6.31dd 3.63d 4.68d 5.33bq 1.37d 6.89d	7.47s 6.97d 6.51dd 3.72d 4.64s 5.47q 1.44d	7.36s 6.92d 6.34dd 3.62d 4.67d 5.37bq 1.37d 6.85d	7.47s 6.96d 6.51dd 3.69d 4.60s 5.47q 1.43d
Thr-2	$\gamma CH_3 \ \beta CH \ lpha CH \ lpha CH \ CONH$	1.68d 6.43q 5.83d 8.19bd	1.69d 6.37q 5.80d 8.73bd ^b	1.68d 6.51q 5.94s	1.74d 6.39q 5.83d 8.32bd	1.69d 6.51q 5.94bs 7.96bd ^b	1.77d 6.56q 6.81d 9.80bd	1.67d 6.60q 6.77s 9.63bd ^b
Thstn Th	γCH_{3} γCH βCH_{3} αCH CONH nz-4 =CH	1.35d 3.83bq 1.19s 5.77d 7.55bd 8.27s	1.32d 3.82q 1.18s 5.78d 7.58bd 8.31s	1.31d 3.98q 1.19s 5.84s 8.55s	1.34d 3.82bq 1.19s 5.76d 7.57bd 8.28s	1.42d 4.00q 1.26s 5.85s 7.74bd ^b 8.56s	1.37d 3.81bq 1.21s 5.77d 7.56bd 8.56s°	1.41d 3.99q 1.24s 5.89s 8.10bd ^b 8.62s ^e
(+)Cys	βCH β'CH αCH	3.12dd 3.72dd 4.96dd	3.18dd 3.66dd 5.00dd	3.25dd 3.71dd 5.17dd	3.11dd 3.70dd 4.95dd	3.25dd 3.72dd 5.19dd	3.11dd 3.71dd 4.94dd	3.24dd 3.71dd 5.15dd
Debut	γCH₃ βCH CONH	1.62d 6.19q 8.51bs	1.64d 6.23q 8.55bs	1.65d 6.30q	1.63d 6.19q 8.50bs	1.64d 6.30q	1.62d 6.20q 8.48bs	1.65d 6.28q
Thr-1	γCH ₃ βCH αCH CONH	1.01d° ~1.25m 4.48bd 6.83bd	0.86d 1.57dq 4.43dd 7.09bd	1.04d ~1.60m 4.58d	1.00d° ~1.05m 4.45bd 6.84bd	1.06d° ~1.30m 4.64d 7.17bd ^b	0.97d° ~1.10m 4.44bd 6.87bd	0.96d ~1.30m 4.58d
ThstA ^d	P–2–CH P–3a–CH P–3e–CH P–4a–CH P–4e–CH P–6a–CH	2.97dddd 3.51dddd 2.30ddd 4.11ddd 5.18bs	2.96dddd 3.51dddd 2.33ddd 4.10ddd 5.32bs	h 2.53d 4.15d 5.49s	2.96m 3.48m 2.28ddd 4.09ddd 5.14bs	h h 2.54d 4.16d 5.49s	$\begin{array}{c} 4.15dd \\ 2.13m^i \\ 2.13m^i \\ 1.48m^i \\ 2.34m^i \\ 4.46bs \end{array}$	4.35m 2.57m ^j 2.57m ^j 2.67m ^j 5.28bs

Table 1. ¹H Chemical shift data^a.

(to be continued)

			I			II]	II
Ass	signments	CDCl ₃	CDCl ₃ CD ₃ OD	$CD_{3}CO_{2}D$	CDCl ₃	CD_3CO_2D	$CDCl_3$	CD ₃ CO ₂ D
T T T	CONH hz-1 =CH hz-2 =CH hz-3 =CH	9.81bs 8.26s 8.08s 7.43s	9.81bs 8.30s 8.17s 7.57s	8.52s 8.43s 7.69s	9.83bs 8.27s 8.11s 7.44s	8.53s 8.42s 7.68s	9.76bs ^g 8.18s ^e 8.12s 7.40s	8.51s° 8.43s 7.70bs
Deala- S-1	β =CH(c) β =CH(t) CONH	5.58bs 6.80d 9.97bs	5.63d ^f 6.71d 9.98bs ^b	5.74bs 6.75bs	5.57bs 6.79bs 9.96bs	5.72bs 6.76bs	5.57bs 6.74bs 9.89bs ^g	5.70bs 6.74bs ^k
Deala- S-2	β =CH(c) β =CH(t) CONH	5.51bs 6.69d 8.99bs	5.71d ^f 6.53d 9.14bs ^b	5.83bs 6.50bs	5.48bs 6.69bs 8.99bs	5.84bs 6.52bs	6.13bs 6.74bs 8.69bs	6.12bs 6.70bs ^k

Table 1. (continued)

^a The samples were dissolved in CDCl₃, CDCl₃–CD₃OD (4:1), and CD₃COOD (*ca.* 10 mM) [not soluble in water or CD₃OD]. The 270-MHz ¹H NMR spectra of sample solutions at 23°C were measured by a Bruker WH-270 spectrometer equipped with a Nicolet 1180 computer system. The experimental conditions for the pulse FT measurements were: spectral width, 3,600 Hz; number of data points, 16K; flip angle, 90°; acquisition time, 2.26 sec; number of transients, $64 \sim 256$. Chemical shifts (δ) were measured from the internal standard of tetramethylsilane. Data on II and III in CDCl₃–CD₃OD (4:1) are not described here.

Abbreviations are as follows: Deala, dehydroalanine; Debut, dehydrobutyrine; P, piperidine ring; Q, quinaldic acid precursor⁶; Thstn, thiostreptine residue⁶; ThstA, thiostreptonic acid unit⁶; Thz, thiazole ring: for signal multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad signal.

^b Signal intensities are reduced owing to partial deuterium exchanges.

° Second-order patterns.

^d Abbreviations a and e are axial and equatorial, respectively.

e^{~g} Assignments may be interchanged.

^h Not observed because of the deuterium exchanges through the imine-enamine tautomerism⁹).

1∼ K	Not	assi	gned.
------	-----	------	-------

Ala-1	(αCH, CONH)=9.3
Val	$(\alpha CH, \beta CH) = 4.0$
Q	(5=CH, 6=CH)=9.7; (6=CH, 7-CH)=5.8; (7-CH, 8-CH)=1.8; (8-CH,
	8-OH)=7.0
Thr-2	$(\alpha CH, \beta CH) < 0.5; (\alpha CH, CONH) = 9.3$
Thstn	$(\alpha CH, CONH) = 10.2$
(+)-Cys	$(\alpha CH, \beta CH) = 11.5; (\alpha CH, \beta' CH) = 9.3; (\beta CH, \beta' CH) = -12.8$
Thr-1	$(\alpha CH, \beta CH) = 1.5; (\alpha CH, CONH) = 10.7$
ThstA-P	(3a-CH, 3e-CH)=-19.0; (4a-CH, 4e-CH)=-12.5; (3a-CH, 4a-CH)=12.5;
	(3a-CH, 4e-CH)=6.0; (3e-CH, 4a-CH)=6.0; (3e-CH, 4e-CH)=1.5;
	(3a-CH, 6a-CH) ≈1.5; (3e-CH, 6a-CH) ≈0.5
Deala-S-1	$[\beta = CH(c), \beta = CH(t)] = -2.2$
Deala-S-2	$[\beta = CH(c), \beta = CH(t)] = -2.5$

Fable 2. ¹ H, ¹ H Coupling constants (J in Hz) for I in CD	Cl	13	3	3	ŝ	ŝ	3	3	3		l)	2	_	_	Ĺ	(())	_	I	ļ	2	_	_	((1	0	I	i			I	1	ſ	r	IJ)	C	f	1)	Z	7	ł	-	ł		1	n	i		J		(5	5	t	1	0	I	Ľ	a	:	t	5	l	0	r)])	(2	(5	3	g	ļ	1	ľ	U	1	l))	Ľ	1	1	u	ι	1))	C	C	((4))	2	2	2	2	_	_	_	2	2)	2		2))	4	((C	C)))))	1	1	1	ι	ι	ι	U	u	1	.1	1	1
--	----	----	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	--	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---

* About ± 0.5 Hz. All ${}^{3}J(CH_{3}, CH)$ values were about $6.6 \sim 7.2$ Hz.

difference spectra of I in CDCl₃ at 60° C and, in fact, obtained all NOE's as positive enhancements at 270-MHz (25 and 15% NOE between the geminal =CH₂ of the Deala-S-1 residue), as shown in Table 3. These NOE observations were useful for establishing the signal assignments (Table 1) and further for elucidating the stereostructures as described below.

For investigating the correlations between the stereostructures and ¹H spectra, we constructed molecular models (CPK and Fieser models) on the basis of the stereographic drawing of II (Fig.

	$^{1}\mathrm{H}$	signal		NOE		¹ H s	ignal		NOE
Irra	diated	Ot	oserved	(%)	Ir	radiated	C	bserved	(%)
Ala-1	αСН	Thr-2	αСН	5	Debut	CONH	Thr-1	αCH	slight
	αCH	ThstA	CONH	15	Thr-1	αCH	Debut	CONH	5
Deala-1	β =CH(c)	Q	3=CH	10		β CH	Thr-2	CONH	10
	β =CH(c)	ThstA	Thz-2 =CH	10		γCH_3	Debut	CONH	slight
	CONH	Deala-2	β=CH(c)	5		γCH_3	Thr-1	CONH	slight
Deala-2	β =CH(c)	Deala-1	CONH	10		CONH	Thr-1	β CH	5
Q	5=CH	Q	11-CH	5		CONH	ThstA	Thz-3 =CH	5
	7-CH	Val	αCH	5	ThstA	P-4a-CH	ThstA	P-6a-CH	15
	8-CH		αCH	10		Р-6а-СН		Thz-3 =CH	10
	11-CH	Q	3=CH	15		CONH	Ala-1	αCH	5
	11-CH		5=CH	15		Thz-3 =CH	ThstA	Р-ба-СН	slight
	11-CH	ThstA	Thz-2 =CH	15	Deala-	β =CH(c)	Deala-	CONH	10
	11-CH ₃	Q	3=CH	5		CONH	~ 1	β =CH(c)	5

Table 3. Positive NOE enhancements observed for I in CDCl₃ at 60°C*.

* Positive NOE's were observed between all mutually geminal and all mutually vicinal proton signals except those between mutually vicinal αCH and CONH signals, and are not described here. The experimental conditions for NOE measurements were: ¹H-irradiation time, 1 sec; acquisition

time, 0.56 sec; total number of transients, 256.

4 of Ref. 5), the dependence of ${}^{3}J_{H,H}$ (Table 2) upon dihedral angles¹⁶⁾, and NOE enhancements (Table 3). The molecular model of I is schematically shown in Fig. 2. Inspections of molecular models show that the ¹H NMR data obtained are all consistent with the structures and conformations. Detailed comparisons between the NMR data on I, II, and III (Tables 1 and 2) indicate that their spectral differences correspond to their structural ones.

The extraordinary upfield shift (*ca.* -3 ppm) of the β CH signal, the upfield shift (*ca.* -0.2 ppm) of the γ CH₃ signal and the downfield shift (*ca.* +0.4 ppm) of the α CH signal of the

Thr-1 residue from the ordinary positions¹⁷⁾ are satisfactorily explained by the ring-current anisotropy effects of the pyridine ring of the quinaldic-acid precursor⁶⁾ (Q) unit; the β CH proton is situated directly above the plane of the pyridine ring (see the circled H in Fig. 2). The pyridine ring also exerts the ringcurrent effects upon the β =CH signals of the Deala-1 and Deala-2 residues; these β =CH signals appear at appreciably higher fields than do those of the Deala-S-1 and Deala-

S-2 residues in the side chain. Some downfield shifts of the Thr-2 signals are also due to the ring-current effects of the pyridine and the thia-zole-3 (Thz-3) ring.

In conclusion, the 270-MHz ¹H NMR spectra of I and II were found to be consistent with the total structures proposed previously^{6,8)}. Furthermore, the conformations of the cyclic parts of these antibiotics in solution were found to be similar to the conformation of II in crystal⁵⁾.

> Kazuo Tori* Katsuya Tokura Yohko Yoshimura Kei Okabe Hideo Otsuka

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

FUYUHIKO INAGAKI TATSUO MIYAZAWA Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan

(Received July 26, 1979)

References

- NISHIMURA, H.; S. OKAMOTO, M. MAYAMA, H. OTSUKA, K. NAKAJIMA, K. TAWARA, M. SHIMO-HIRA & N. SHIMAOKA: Siomycin, a new thiostrepton-like antibiotic. J. Antibiotics, Ser. A 14: 255~263, 1961
- 2) (a) PAGANO, J. F.; M. J. WEINSTEIN, H. A. STOUT & R. DONOVICK: Thiostrepton, a new antibiotic. I. *In vitro* studies. Antibiot. Ann. 1955/1956: 554~559, 1956
 (b) VANDEPUTTE, J. & J. D. DUTCHER: Thiostrepton, a new antibiotic. II. Isolation and chemical characterization. Antibiot. Ann. 1955/1956: 560~561, 1956
- 3) BODANSZKY, M.; J. FRIED, J. T. SHEEHAN, N. J. WILLIAMS, J. ALICINO, A. I. COHEN, B. T. KEELER & C. A. BIRKHIMER: Thiostrepton. Degradation products and structural features. J. Am. Chem. Soc. 86: 2478~2490, 1964
- 4) (a) EBATA, M.; K. MIYAZAKI & H. OTSUKA:

THE JOURNAL OF ANTIBIOTICS

(b) EBATA, M.; K. MIYAZAKI & H. OTSUKA: Studies on siomycin. II. The composition and degradation products of siomycin A. J. Antibiotics 22: 423~433, 1969

(c) EBATA, M.; K. MIYAZAKI & H. OTSUKA: Studies on siomycin. III. Structural features of siomycin A. J. Antibiotics 22: 434~441, 1969

- ANDERSON, B.; D. C. HODGKIN & M. A. VIS-WAMITRA: The structure of thiostrepton. Nature 225: 233~235, 1970
- 6) TORI, K.; K. TOKURA, K. OKABE, M. EBATA, H. OTSUKA & G. LUKACS: Carbon-13 NMR studies of peptide antibiotics, thiostrepton and siomycin A: the structure relationship. Tetrahedron Lett. 1976: 185~188, 1976
- BODANSZKY, M.; J. A. SCOZZIE & I. MURA-MATSU: Dehydroalanine residues in thiostrepton. J. Antibiotics 23: 9~12, 1970
- 8) OLESKER, A.; L. VALENTE, L. BARATA, G. LUKACS, W. E. HULL, K. TORI, K. TOKURA, K. OKABE, M. EBATA & H. OTSUKA: Natural abundance ¹⁵N NMR spectroscopic evidence for the structural relationship between the peptide antibiotics thiostrepton and siomycin-A. J. Chem. Soc., Chem. Comm. 1978: 577~578, 1978
- 9) (a) MIYAIRI, N.; T. MIYOSHI, H. AOKI, M. KOHSAKA, H. IKESHIMA, K. KUNUGITA, H. SAKAI & H. IMANAKA: Studies on thiopeptin antibiotics. I. Characteristics of thiopeptin B. J. Antibiotics 23: 113~119, 1970
 (b) MIYAIRI, N.; T. MIYOSHI, H. AOKI, M.

Kohsaka, H. Ikushima, K. Kunugita, H.

SAKAI & H. IMANAKA: Thiopeptin, a new feed additive antibiotic: Microbiological and chemical studies. Antimicr. Agents & Chemoth. 1: 192~196, 1972

- 10) HENSENS, O. D. & G. ALBERS-SCHÖNBERG: Total structure of the peptide antibiotic components of thiopeptin by ¹H and ¹³C NMR spectroscopy. Tetrahedron Lett. 1978: 3649~ 3652, 1978
- FREEMAN, R.; H. D. W. HILL, B. L. TOMLINSON & L. D. HALL: Dipolar contribution to NMR spin-lattice relaxation of protons. J. Chem. Phys. 61: 4466~4473, 1974
- 12) RICHARZ, R. & K. WÜTHRICH: NOE difference spectroscopy: a novel method for observing individual multiplets in proton NMR spectra of biological macromolecules. J. Magn. Reson. 30: 147~150, 1978
- 13) TORI, K. & K. MATSUSHITA: unpublished results
- 14) BALARAM, P.; A. A. BOTHNER-BY & J. DADOK: Negative nuclear OVERHAUSER effects as probes of macromolecular structure. J. Am. Chem. Soc. 94: 4015~4017, 1972
- 15) GLICKSON, J. D.; S. L. GORDON, T. P. PITNER, D. G. AGRESTI & R. WALTER: Intramolecular ¹H nuclear OVERHAUSER effect study of the solution conformation of valinomycin in dimethyl sulfoxide. Biochemistry 15: 5721~ 5729, 1976
- 16) BYSTROV, V. F.; A. S. ARSENIEV & YU. D. GAVRILOV: NMR spectroscopy of large peptides and small proteins. J. Magn. Reson. 30: 151~184, 1978
- WÜTHRICH, K.: NMR in biological research. Peptides and proteins. Chapter II. North-Holland Publishing Co., Amsterdam, 1976